Exact linesearch limited-memory quasi-Newton methods for minimizing a quadratic function

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Stochastic Adaptive Quasi-Newton Methods for Minimizing Expected Values

We propose a novel class of stochastic, adaptive methods for minimizing self-concordant functions which can be expressed as an expected value. These methods generate an estimate of the true objective function by taking the empirical mean over a sample drawn at each step, making the problem tractable. The use of adaptive step sizes eliminates the need for the user to supply a step size. Methods ...

متن کامل

Numerical Experience with Limited-Memory Quasi-Newton and Truncated Newton Methods

Computational experience with several limited-memory quasi-Newton and truncated Newton methods for unconstrained nonlinear optimization is described. Comparative tests were conducted on a well-known test library [J. on several synthetic problems allowing control of the clustering of eigenvalues in the Hessian spectrum, and on some large-scale problems in oceanography and meteorology. The result...

متن کامل

Quasi-Newton Methods for Nonconvex Constrained Multiobjective Optimization

Here, a quasi-Newton algorithm for constrained multiobjective optimization is proposed. Under suitable assumptions, global convergence of the algorithm is established.

متن کامل

A Modified Orthant-Wise Limited Memory Quasi-Newton Method

where U = V k−mV k−m+1 · · ·V k−1. For the L-BFGS, we need not explicitly store the approximated inverse Hessian matrix. Instead, we only require matrix-vector multiplications at each iteration, which can be implemented by a twoloop recursion with a time complexity of O(mn) (Jorge & Stephen, 1999). Thus, we only store 2m vectors of length n: sk−1, sk−2, · · · , sk−m and yk−1,yk−2, · · · ,yk−m w...

متن کامل

Automatic Preconditioning by Limited Memory Quasi-Newton Updating

This paper proposes a preconditioner for the conjugate gradient method (CG) that is designed for solving systems of equations Ax = bi with different right-hand-side vectors or for solving a sequence of slowly varying systems Akx = bk. The preconditioner has the form of a limited memory quasi-Newton matrix and is generated using information from the CG iteration. The automatic preconditioner doe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Computational Optimization and Applications

سال: 2021

ISSN: 0926-6003,1573-2894

DOI: 10.1007/s10589-021-00277-4